Assignment 10

Hand in no. 2, 3, 7 and 9 by Nov 23, 2018.

- 1. Show that the bounded sequence of sequences $\{\mathbf{e}_n\}$ where $\mathbf{e}_n = (0, \dots, 0, 1, 0, \dots,)$ is the sequence with 1 at the *n*-th place and equal to 0 elsewhere has no convergent subsequences in the space l^2 . Recall that l^2 is the space consisting of all sequences $\mathbf{a} = \{a_n\}$ satisfying $\|\mathbf{a}\|_2 = (\sum_n a_n^2)^{1/2} < \infty$.
- 2. Consider $\{f_n\}, f_n(x) = x^{1/n}$, as a subset in C[0, 1]. Show that it is a closed, bounded, but has no convergent subsequence in C[0, 1].
- 3. Prove that $\{\cos nx\}_{n=1}^{\infty}$ does not have any convergent subsequence in C[0,1].
- 4. Show that any finite set in $C(\overline{G})$ is bounded and equicontinuous.
- 5. Let *E* be a bounded, convex set in \mathbb{R}^n . Show that a family of equicontinuous functions is bounded in *E* if it is bounded at a single point, that is, if there are $x_0 \in E$ and a constant M > 0 such that $|f(x_0)| \leq M$ for all *f* in this family.
- 6. Let $\{f_n\}$ be a sequence of bounded functions in [0,1] and let F_n be

$$F_n(x) = \int_0^x f_n(t)dt$$

- (a) Show that the sequence $\{F_n\}$ has a convergent subsequence provided there is some M such that $||f_n||_{\infty} \leq M$ for all n.
- (b) Show that the conclusion in (a) holds when boundedness is replaced by the weaker condition: There is some K such that

$$\int_0^1 |f_n|^2 \le K, \quad \forall n.$$

7. Prove that the set consisting of all functions G of the form

$$G(x) = \sin x + \int_0^x \frac{g(y)}{1 + g^2(y)} \, dy \; ,$$

where $g \in C[0, 1]$ is precompact in C[0, 1].

8. Let $K \in C([a, b] \times [a, b])$ and define the operator T by

$$(Tf)(x) = \int_{a}^{b} K(x, y) f(y) dy.$$

- (a) Show that T maps C[a, b] to itself.
- (b) Show that whenever $\{f_n\}$ is a bounded sequence in C[a, b], $\{Tf_n\}$ contains a convergent subsequence.
- 9. Let f be a bounded, uniformly continuous function on \mathbb{R} . Let $f_a(x) = f(x+a)$. Show that for each l > 0, there exists a sequence of intervals $I_n = [a_n, a_n + l], a_n \to \infty$, such that $\{f_{a_n}\}$ converges uniformly on [0, l].
- 10. Optional. Let $\{h_n\}$ be a sequence of analytic functions in the unit disc satisfying $|h_n(z)| \le M$, $\forall z, |z| < 1$. Show that there exist an analytic function h in the unit disc and a subsequence $\{h_{n_j}\}$ which converges to h uniformly on each smaller disc $\{z : |z| \le r\}, r \in (0, 1)$. Suggestion: Use a suitable Cauchy integral formula.